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Preface

These notes are largely based on Math 6640: Introduction to Optimisation course, taught
by Braxton Osting in Fall 2018, at the University of Utah. The main textbook is [Bec14], but
additional examples or remarks or results from other sources are added as we see fit, mainly
to facilitate our understanding. These notes are by no means accurate or applicable, and any
mistakes here are of course our own. Please report any typographical errors or mathematical
fallacy to us by email rebeccah@math.utah.edu or tan@math.utah.edu or willis@math.utah.edu.
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Chapter 1

Linear Algebra

We are interested in the following optimisation problem: minimise an objective functional f(x)
subject to the constraints

gi(x) = 0 for i = 1, . . . ,m

hj(x) = 0 for j = 1, . . . , p

We denote the feasible (admissible or constraint) set S as the set of x ∈ Rn that satisfy the
inequality and equality constraint functions. A vector x∗ ∈ Rn is a global minimiser if x∗ ∈ S
and f(x∗) ≤ f(x) for all x ∈ S. The optimal value is f ∗ := f(x∗). A vector x∗ ∈ Rn is a
local minimiser if x∗ ∈ S and f(x∗) ≤ f(x) for all x in a neighbourhood of x∗.

This problem collapses to the standard single-variable calculus in the case of n = 1, but
what about higher dimensional? We are also interested in optimising functionals that are
non-differentiable. Equality constraints correspond to the method of Lagrange multipliers, the
difficult bits to handle are the inequality constraints. Some of the important questions that we
care about:

1. Well-posedness of the problem, i.e. existence and uniqueness of a (global) minimiser.
This depends on the properties of the functional and the feasible set.

2. Characterisation of solution set.

3. How to numerically approximate solutions.

We point out that the following problems are equivalent

max
x∈S

f(x) ⇐⇒ −min
x∈S

(−f(x)).

We will mainly focus on continuous optimisation problem, i.e. the admissible set varies contin-
uously. We can always rewrite the equality constraint h(x) = 0 as two inequality constraints
h(x) ≤ 0 and h(x) ≥ 0. Below are some real-life applications:

1. Pattern recognition/classifications (binary)

2. Medical imaging

3. Shape optimisation

4. Portfolios optimisation
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8 1.1. Inner Products and Norms

5. Scheduling problems

6. Advertisement optimisation

Problems that have special structures:

1. Least squares problems (medical imaging, regression problem). This has the form

min
x∈Rn
‖Ax− b‖2.

The problem actually has analytical solution x = (ATA)−1AT b.

2. Linear programming (LP) problems. This has the form

min
aTi x≤bi,i=1,...,m

cTx

[Constraints could be affine.]

3. Convex problems, where the objective functional f and inequality constraint functions
gi are convex functions. No analytical solution, but there are very efficient numerical
methods.

4. Nonconvex problems. These are generally very difficult.

1. Nonnegative orthant:
Rn

+ = {x ∈ Rn : x ≥ 0 pointwise}.

2. Positive orthant:
Rn

++ = {x ∈ Rn : x > 0 pointwise}.

3. Closed line segments: For any x, y ∈ Rn,

[x, y] = {x+ α(y − x) ∈ Rn : α ∈ [0, 1]}.

4. Unit simplex ∆n:
∆n = {x ∈ Rn : x ≥ 0, xT e = 1}.

Here, e = (1, . . . , 1)T ∈ Rn is the 1-vector. (Intersection of planes passing through certain
points)

1.1 Inner Products and Norms

Definition 1.1.1. An inner product on Rn is a map 〈·, ·〉 : Rn × Rn 7→ R satisfying

(a) 〈x, y〉 = 〈y, x〉 for all x, y ∈ Rn

(b) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

(c) 〈λx, y〉 = λ〈x, y〉 for all λ ∈ R, x, y ∈ Rn

(d) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = 0
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A standard example of inner product is the vector dot product. We can also construct a
weighted inner product as follows: for any w ∈ Rn

++,

〈x, y〉w =
n∑
i=1

wixiyi.

Definition 1.1.2. A norm on Rn is a function ‖ · ‖ : Rn 7→ R satisfying

(a) ‖x‖ ≥ 0 for all x ∈ Rn and ‖x‖ = 0 ⇐⇒ x = 0.

(b) ‖λx‖ = |λ|‖x‖ for all λ ∈ R, x ∈ Rn

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖
Any inner product induces a norm ‖x‖ =

√
〈x, x〉. The Euclidean norm is

‖x‖2 = xTx =

(
n∑
i=1

x2i

)1/2

.

The generalisation of Euclidean norm is the `p-norm for 1 ≤ p ≤ ∞:

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

.

One can show that the `∞-norm is the limit of the `p-norm as p −→∞:

‖x‖∞ = max
i=1,...,n

|xi|.

Lemma 1.1.3 (Cauchy-Schwarz). The following holds for all x, y ∈ Rn

|xTy| ≤ ‖x‖‖y‖
with equality holds for x = αy for all α ∈ R.

Let’s look at the induced matrix norm. More precisely, given two norms ‖ · ‖a and ‖ · ‖b,

‖A‖a,b = max
x∈Rn

{
‖Ax‖b : ‖x‖a ≤ 1

}
.

An immediate consequence of the definition is the following:

‖Ax‖a,b ≤ ‖A‖a,b‖x‖a.
We can also consider the spectral norm:

‖A‖2 = ‖A‖2,2 =
√
λmax(ATA) = σmax(A).

We can also look at the induced matrix 1-norm:

‖A‖1 = ‖A‖1,1 = max
j=1,...,n

(
m∑
i=1

|aij|

)
= maximum column sum

‖A‖∞ = ‖A‖∞,∞ = max
i=1,...,m

(
n∑
j=1

|aij|

)
= maximum row sum

Finally, we define the Frobenius norm (this cannot be induced!) as

‖A‖F =

(
m∑
i=1

n∑
j=1

a2ij

)1/2

.
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1.2 Eigenvalues and Eigenvectors

Definition 1.2.1. Let A ∈ Rn×n. Then v ∈ Rn, v 6= 0 is an eigenvector of A with eigenvalue
λ ∈ C if Av = λv. Note that eigenvectors are scalar-invariant, so typically we choose v such
that ‖v‖2 = 1.

A well-known fact is the following: the eigenvalues of a symmetric matrix exist and are
real. We order the eigenvalues from the largest to the smallest:

λmax(A) = λ1(A) ≥ λ2(A) ≥ . . . · · · ≥ λn(A) = λmin(A).

Theorem 1.2.2 (Spectral Decomposition). Let A ∈ Rn×n be a symmetric matrix. Then
there exists an orthogonal matrix U ∈ Rn×n (i.e. UTU = In = UUT ) and a diagonal matrix
D = diag(λ1(A), λ2(A), . . . , λn(A)) such that A = UDUT . Moreover, λj(A), j = 1, 2, . . . , n are
the eigenvalues of A and columns uj of U are the corresponding eigenvector of λj.

Corollary 1.2.3. The following identity holds for symmetric (normal) matrices:

Tr(A) =
n∑
i=1

λi(A)

det(A) =
n∏
i=1

λi(A)

Definition 1.2.4. For x 6= 0, the Rayleigh Quotient RA : Rn 7→ R is defined by

RA(x) =
xTAx

xTx
.

Lemma 1.2.5.
λmin(A) ≤ RA(x) ≤ λmax(A) for all x ∈ Rn, x 6= 0.

Moreover,

λmax(A) = max
x6=0

RA(x)

λmin(A) = min
x 6=0

RA(x)

1.3 Point-Set Topology

Definition 1.3.1. The open ball with center c ∈ Rn and radius r > 0 is

B(c, r) = {x ∈ Rn : ‖x− c‖ < r}.

The closed ball with center c ∈ Rn and radius r > 0 is

B[c, r] = {x ∈ Rn : ‖x− c‖ ≤ r}.

Definition 1.3.2. Given U ⊂ Rn, a point x ∈ U is an interior point of U if there exists
r > 0 for which B(x, r) ⊂ U . The interior of U is the set of all interior points and denoted
int(U).



Linear Algebra 11

Definition 1.3.3. An open set is a set that contains only interior points.

Definition 1.3.4. A set U is closed if its complement U c ≡ Rn \ U is open. Equivalently,
it contains all limits of convergent sequences in U . For example, the closed ball B[c, r], unit
simplex ∆n and line segment [a, b] are closed sets in Rn.

Proposition 1.3.5. Let f be a continuous function defined on a closed set S ⊂ Rn. For any
α ∈ R, the sets

L(f, α) = {x ∈ S : f(x) ≤ α} = α-sublevel set of f

Con(f, α) = {x ∈ S : f(x) = α} = α-contour of f

are closed.

Definition 1.3.6. Given a set U ⊂ Rn, a point x ∈ U is called a boundary point if for all
r > 0, the open ball B(x, r) contains at least one point in U and one point in U c.

For example, bd(B[c, r]) = {x ∈ Rn : ‖x− c‖ = r}. Also, bd(∆n) = ∆n.

Definition 1.3.7. The closure of U ⊂ Rn is the smallest closed set that contains U , i.e.

cl(U) = ∩{T : U ⊂ T, T closed}.

One can show that cl(U) = U ∪ bd(U).

Definition 1.3.8. A set U ⊂ Rn is bounded if there exists an M > 0 such that U ⊂ B(0,M).

Definition 1.3.9 (Heine-Borel). A set U ⊂ Rn is compact if and only if it is closed and
bounded.

1.4 Differentiability

Let f : S 7→ R be a real-valued function on S ⊂ Rn, x ∈ int(S) and d ∈ Rn, ‖d‖ = 1. If

f ′(x; d) := lim
ε→0+

f(x+ εd)− f(x)

ε

exists, it is called the directional derivative (unclear).
Consider the standard canonical basis {e1, . . . , en} ⊂ Rn. The partial derivative of f at x

is given by
∂f

∂xi
= f ′(x; ei) = lim

ε→0+

f(x+ εei)− f(x)

ε
.

If all partial derivatives exist, we define the gradient ∇f as

∇f(x) = (∂x1f, ∂x2f, . . . , ∂xnf)T ∈ Rn.

We say that a function f : Rn 7→ R is continuously differentiable on U ⊂ Rn and written
f ∈ C1(U) if all partial derivatives exist and are continuous. In this case,

f ′(x; d) = ∇f(x) · d.

If f : S ⊂ Rn 7→ Rm is a vector-valued function, we compute the Jacobian by computing the
gradient of components

∇f(x) = [∇f1|∇f2| . . . |∇fn] ∈ Rn×m.
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Example 1.4.1. Take w ∈ Rn and consider the function f : Rn −→ R defined by f(x) = wTx.
Then

∇f(x) = (w1, w2, . . . , wn)T = w.

Example 1.4.2. Take B ∈ Rm×n and consider the function f : Rn −→ Rm defined by f(x) =
Bx. Then ∇f(x) = BT .

Example 1.4.3. Take A ∈ Rn×n and consider the function f : Rn −→ R defined by f(x) =
xTAx. Show that ∇f = (A+ AT )x. In particular, ∇f(x) = 2Ax.

Definition 1.4.4. If all partial derivatives of f : Rn −→ R are continuously differentiable, we

can compute the second partial derivatives
∂f(x)

∂xi∂xj
. The matrix of all second partial derivatives

is the Hessian of f at x:

[∇2f ]i,j =
∂f

∂xi∂xj
= ∇Tf ∈ Rn×n.

We say that f is twice-differentiable on U ⊂ Rn and write f ∈ C2(U) if the Hessian of f is
continuous on U . In this case, the Hessian is symmetric, i.e. ∇2f(x) = [∇2f(x)]T .

Theorem 1.4.5 (Chain Rule). Let f : Rm −→ R and g : Rn −→ Rm be differentiable functions.
The gradient of the function h : Rn −→ R defined by h(x) = f(g(x)) is given by

∇h(x) =
n∑
i=1

∂f(g(x))

∂xi
∇gi(x) = ∇g · ∇f(g(x)).

As an example, consider the function g : Rp −→ Rm defined by g(x) = f(Ax + b), where
A ∈ Rn×p and b ∈ Rn. Then

∇g(x) = AT∇f(Ax+ b).

For m = 1, one can show that the Hessian of g is ∇2g(x) = AT∇2f(Ax+ b)A ∈ Rp×p.

Theorem 1.4.6. Let U ⊂ Rn be open, f ∈ C2(U) and x ∈ U, r > 0 such that B(x, r) ⊂ U .
Then for all y ∈ B(x, r), there exists zy ∈ [x, y] (typically unknown) such that the following
linear approximation holds:

f(y) = f(x) + (y − x)T∇f(x) +
1

2
(y − x)T∇2f(zy)(y − x)︸ ︷︷ ︸

remainder term

.

The remainder term is o(‖y − x‖) as ‖y − x‖ −→ 0. Furthermore, for any y ∈ B(x, r)

f(y) = f(x) + (y − x)T∇f(x) +
1

2
(y − x)T∇2f(y)(y − x) + o

(
‖y − x‖2

)︸ ︷︷ ︸
as ‖y − x‖ −→ 0

.

For example, the quadratic approximation of the exponential function is

ex = 1 + x+
x2

2
+ o(x2) as x −→ 0.



Chapter 2

Optimality Conditions for
Unconstrained Optimisation

2.1 Global and Local Optima

Definition 2.1.1. Let f : S −→ R be defined on a constrained set S ⊂ Rn. Then

1. x∗ ∈ S is a global minimiser of f over S if f(x) ≥ f(x∗) for all x ∈ S

2. x∗ ∈ S is a strict global minimiser of f over S if f(x) > f(x∗) for all x ∈ S.

Example 2.1.2. A global minimiser may not exist. For example, min
x∈R

e−x = 0 and min
x∈(0,1)

x = 0

but they are never actually attained. Another example would be a quadratic function over R,
but with a hole at the vertex.

Definition 2.1.3. The minimal value of f over S is the infimum of f over S:

f ∗ = min{f(x), x ∈ S} = inf{f(x), x ∈ S}.

The set of global minimisers of f over S is denoted by

argmin{f(x) : x ∈ S}.

Note that this set might be empty.

Example 2.1.4. Consider maximising the function f(x1, x2) = x1 + x2 over the closed unit
ball S = B[0, 1]. From Cauchy-Schwarz,

f(x) = eTx ≤≤ ‖e‖‖x‖ ≤
√

2.

On the other hand, choosing (x1, x2) = (1/
√

2, 1/
√

2) ∈ B[0, 1] gives

f(1/
√

2, 1/
√

2) =
2√
2

=
√

2.

Thus f ∗ =
√

2 and (1/
√

2, 1/
√

2) is a global maximiser.

Definition 2.1.5. Let f : S −→ R be defined on S ∈ Rn.

13



14 2.2. Classification of Matrices

1. x∗ ∈ S is a local minima of f over S if there exists an r > 0 such that

f(x) ≥ f(x∗) for all x ∈ S ∩B(x∗, r)

2. x∗ ∈ S is a strict local minima of f over S if there exists an r > 0 such that

f(x) > f(x∗) for all x ∈ S ∩B(x∗, r)

An example would be the double well potential function.

Theorem 2.1.6 (Necessary condition for local optima). Let f : U −→ R be a function defined
on a set U ⊂ Rn. Suppose x∗ ∈ int(U) is a local optimum point and all partial derivatives of f
exist at x∗. Then ∇f(x∗) = 0.

Definition 2.1.7. Let f : U −→ R be a function defined on a set U ⊂ Rn. x∗ ∈ int(U) is a
stationary point of f if f is differentiable in a neighbourhood of x∗ and ∇f(x∗) = 0.

In 1D, Taylor’s theorem asserts that

f(x∗ + d) = f(x∗) + f ′(x∗)d+
1

2
f ′′(x∗)︸ ︷︷ ︸

tells us something about the curvature

d2 + o(d2).

with x∗ a stationary point. We have a local minima if f ′′(x∗) > 0, local maxima if f ′′(x∗) < 0,
inconclusive if f ′′(x∗) = 0. In higher dimension, we need to look at the Hessian ∇2f(x). (look
at principal eigenvalues?)

2.2 Classification of Matrices

Definition 2.2.1. Let A ∈ Rn×n be symmetric.

1. A is positive semidefinite, denoted A � 0 if xTAx ≥ 0 for all x ∈ Rn.

2. A is positive-definite, denoted A � 0 if xTAx > 0 for all x ∈ Rn, x 6= 0.

3. A is negative (semi)definite if −A is positive (semi)definite, denoted A � 0 (A ≺ 0).

4. A is indefinite if it is neither positive or negative semi-definite.

Example 2.2.2. Note that positive definiteness does not require positivity of entries. Let

A =

[
2 −1
−1 2

]
. Then

xTAx =
[
x1 x2

] [ 2 −1
−1 2

] [
x1
x2

]
= 2x21 − 2x1x2 + 2x22 = x21 + x22 + (x1 − x2)2 ≥ 0.

Moreover xTAx = 0 ⇐⇒ x = 0 since xTAx is a sum of squares. We conclude that A is
positive-definite.

Example 2.2.3. Consider the matrix A =

[
1 2
2 1

]
. Choosing x = (1,−1) gives xTAx = −2.

But choosing x = (1, 0) gives xTAx = 1. So the matrix A is indefinite.
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Theorem 2.2.4. If A is positive-definite, then the diagonal elements of A are positive. Simi-
larly if A is positive semidefinite, then the diagonal elements of A are nonnegative.

Example 2.2.5. Suppose A ∈ Rn×n is a diagonal matrix, A = diag(a). Then A � 0 ⇐⇒
a > 0 and A � 0iffa ≥ 0. Easy proof.

Theorem 2.2.6 (Eigenvalue Characterisation Theorem). Let A ∈ Rn×n be symmetric.

1. A is positive (negative) definite if and only if all its eigenvalues are positive (negative).

2. A is positive (negative) semidefinite if and only if all its eigenvalues are nonnegative
(nonpositive).

3. A is indefinite if and only if it has at least one positive and one negative eigenvalue.

Proof. It follows from the spectral decomposition theorem that A is diagonalisable, i.e. there
exists an orthogonal matrix U ∈ Rn×n such that A = UDUT . Then

xTAx = xTUDUTx = (UTx)TD(UTx) = yTDy =
n∑
i=1

λiy
2
i .

�

How to check if the matrix is positive/negative definite in general?

1. Look at the diagonal entries. (note this doesn’t imply that it is positive definite, rather
it gives you a candidate)

2. Compute the eigenvalues

3. Use a rule that guarantees that eigenvalues are positive/negative: 2 × 2 matrix and
diagonally dominant matrix.

Consider a symmetric 2× 2 matrix A =

a b
b
d

. Then

det(A− λI2) = λ2 − Tr(A)λ+ det(A)

and so the eigenvalue λ is given by

λ =
Tr(A)±

√
(Tr(A))2 − 4 det(A)

2
.

First, λ1, λ2 ≥ 0 if and only if Tr(A) ≥ 0 and det(A) ≥ 0.
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2.2.1 Diagonally dominant matrices

Definition 2.2.7. Let A ∈ Rn×n be symmetric. Then

1. A is diagonally dominant if |Aii| ≥
∑

j 6=i |Aij| for all i = 1, 2, . . . , n.

2. A is strictly diagonally dominant if |Aii| >
∑

j 6=i |Aij| for all i = 1, 2, . . . , n.

Theorem 2.2.8. 1. Let A be a diagonally dominant matrix, where the diagonal elements
are nonnegative. Then A is positive semidefinite.

2. Let A be a strictly diagonally dominant matrix, where the diagonal elements are positive.
Then A is positive definite.

Proof. Uses Gershgorin’s circle theorem. Check. �

Example 2.2.9. Consider the second-order finite-difference matrix

D =

[
1 −1 0 . . . 0
−1 2 1 0 . . .

]
.

This is positive semidefinite since D is diagonally dominant and its diagonal elements are
nonnegative.

2.3 Second Order Optimality Conditions

2.4 Quadratic Functions

Definition 2.4.1. A quadratic function on Rn is a function of the form

f(x) = xTAx+ 2bTx+ c,

where A ∈ Rn×n is symmetric, b ∈ Rn and c ∈ R.

Lemma 2.4.2. Let f be a quadratic function.

(a) x is a stationary point of f if and only if Ax = −b.

(b) If A � 0, then x is a global minimum point of f if and only if Ax = −b.

(c) If A � 0, then x = −A−1b is a strict global minimum point of f with value f(x) =
c− bTA−1b.



Chapter 3

Least Square Problems

Suppose we want to solve a linear system Ax = b, where A ∈ Rm×n, b ∈ Rm and rank(A) = n ≤
m, i.e. A has full column rank (A is tall and skinny). Note that if m = n, then the solution is
simply A−1b. If m > n, we say that the system is overdetermined and typically inconsistent.
Let’s look for a solution in the sense that the residual vector r = Ax− b is as small as possible
in the `2-norm. This gives rise to the least square problem:

min
x∈Rn
‖Ax− b‖2.

We choose the `2-norm precisely because then the objective function becomes a quadratic
function:

f(x) = (Ax− b)T (Ax− b) = xTATAx− 2bTAx+ bT b.

By Lemma 2.41, a strict global minimum point is guaranteed if ATA � 0, and this holds if
A has full column rank. Simplifying ∇f(x∗) = 0 yields the normal equation:

ATAx∗ = AT b

which then says that x∗ = (ATA)−1AT b, if the least square solution exists. Note that we recover
the expected solution if m = n:

x∗ = (ATA)−1AT b = A−1(AT )−1AT b = A−1b.

3.1 Regularised Least Squares and Denoising

Here the goal is to denoise a noisy signal b by solving the regularised least squares problem:

min
x∈Rn
‖x− b‖2 + λR(x).

Here, notice that A = I and we have a second term, called a regularisation term. The
constant λ > 0 is called the regularisation parameter. The regularisation function, R(x), is
chosen to “regularise” the solution. In this example, we will choose R(x) = ‖Dx‖2, where
D ∈ Rp×n is a given matrix chosen so that the solution is “smoother” than the origina ldata.
Stationary points of this regularised least squares problem satisfy

(I + λDTD)x∗ = b.

17
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This follows from expanding the objective function and notice that it is a quadratic function:

‖x− b‖2 + λ‖Dx‖2 = xTx− 2bTx+ bTB + λxTDTDx

= xT (I + λDTD)x− 2bTx+ bT b

The question is how should we choose the matrix D?

3.2 Nonlinear Least Squares

We are given a system of nonlinear equations

fi(x) = bi, i = 1, . . . , n.

The nonlinear least squares problem is the following:

min
x∈Rn

n∑
i=1

(fi(x)− bi)2 .

Good algorithms for solving nonlinear least squares problems, e.g. Gauss-Newton (later); note
that this method doesn’t guarantee that it will converge to an optimal point.

Example 3.2.1 (Circle fitting). Given m points a1, . . . am ∈ R2, the circle fitting problem is
to find the circle

C(x, r) = {y ∈ R2 : ‖y − x‖ < r}
that “best” fits the m points. The associated nonlinear equations is fi = ‖x− ai‖ ≈ r, which
gives the following problem:

min
x∈R2,r>0

m∑
i=1

(
‖x− ai‖2 − r2

)2
.

Let us expand the objective functional:

m∑
i=1

(
‖x− ai‖2 − r2

)2
=

m∑
i=1

(
‖x‖2 − 2aTi x+ ‖ai‖2 − r2

)2
=

m∑
i=1

(
R− 2aTi x+ ‖ai‖2

)2
where R = ‖x‖2 − r2; the condition r > 0 implies that we need to impose R ≤ ‖x‖2. The
problem reduces to

min
x∈R2,R≤‖x‖2

f(x, r) = min
x∈R2,R≤‖x‖2

(
m∑
i=1

R− 2aTi x+ ‖ai‖2
)2

.

We claim the constraint R ≤ ‖x‖2 is not necessary. Let us check if f(x,R) is a quadratic
function:

f(x,R) =
m∑
i=1

([
2ai −1

] [x
R

]
− ‖ai‖2

)2
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= ‖Ãx− b‖2

for Ã ∈ Rm×3, y ∈ R3 and b ∈ Rm. Finally, the problem transforms to a linear least squares
problem in the new variable:

min
y∈R3
‖Ãx− b‖2.

Let us prove the claim now. Suppse (x̂, R̂) is optimal with ‖x‖2 < R. Then

−2aTi x̂+ R̂ + ‖ai‖2 > −2aTi x̂+ ‖x̂‖2 + ‖ai‖2 = ‖x̂− ai‖2 ≥ 0.

Squaring each side and sum over i = 1, . . . ,m, we get

f(x̂, R̂) > f(x̂, ‖x̂‖2).

Since f(x̂, ‖x̂‖2) < f(x̂, R̂), this contradicts the optimality of (x̂, R̂).
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Chapter 4

The Gradient Method

4.1 sdf

4.2 sdf

4.3 The Condition Number

Consider minimising the quadratic function f(x) = xTAx.

Lemma 4.3.1. Let {xk}∞k=0 be the sequence generated by the gradient descent method with
exact line search. Then for any k = 0, 1, 2, . . .

f(xk+1) ≤
(
M −m
M +m

)2

f(xk),

where M = λmax(A) and m = λmin(A).

Proof.

f(xk+1) = xTk+1Axk+1

= (xk − tkdk)T A (xk − tkdk)
= xTkAxk − 2tkd

T
kAxk + t2kd

T
kAdk

= xTkAxk − tkdTk dk + t2kd
T
kAdk

= xTkAxk −
(

dTk dk
2dTkAdk

)
dTk dk +

(
dTk dk

2dTkAdk

)2

dTkAdk

= xTkAxk −
1

4

((
dTk dk

)2
dTkAdk

)

=

(
1− 1

4

(
dTk dk

)2
(dTkAdk) (xTkAA

−1Axk)

)
f(xk)

=

(
1− 1

4

(
dTk dk

)2
(dTkAdk) (dTkA

−1dk)

)
f(xk)

21
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Recall the Kantorovich inequality: for any positive definite matrix A ∈ Rn×n and x ∈ Rn, x 6= 0
we have that (

xTx
)2

(xTAx) (xTA−1x)
≥ 4λmax(A)λmin(A)

(λmax(A) + λmin(A))2
.

Thus

f(xk+1) ≤
(

1− 4Mm

(M +m)2

)
f(xk) =

(
M −m
M +m

)2

f(xk).

�

Note that f(xk) is a sequence bounded above by a decreasing geometric sequence. Indeed,

f(xk) ≤
(
M −m
M +m

)2

f(xk−1) ≤ · · · ≤
(
M −m
M +m

)2k

f(x0).

We say that the sequence f(xk) converges linearly.

4.4 Convergence Analysis of Steepest Descent Method

Consider a general unconstrained problem

min
x∈Rn

f(x)

where we assume that f ∈ C1(Rn) and the gradient is globally Lipschitz over Rn. The class of
functions with Lipschitz gradient with constant L is denoted by C1,1

L (Rn). As an example, the
quadratic function f(x) = xTAx is in C1,1

2‖A‖2(R
n).

Theorem 4.4.1. Let f ∈ C2(Rn). The following are equivalent:

1. f ∈ C1,1
L (Rn).

2. ‖∇2f(x)‖2 ≤ L for any x ∈ Rn.

Theorem 4.4.2. Let f ∈ C1,1
L (Rn) and {xk}k≥0 be the sequence generated by the steepest

descent method for solving
min
x∈Rn

f(x)

with one of the following stepsize strategies:

1. constant stepsize t̃ ∈
(

0,
2

L

)
,

2. exact line search,

3. backtracking line search with parameters s ∈ R++, α ∈ (0, 1) and β ∈ (0, 1).

Assume f is bounded below over Rn. Then

(a) The sequence {f(xk)}k≥0 is nonincreasing with f(xk) > f(xk+1) unless ∇f(xk) = 0.

(b) ∇f(xk) −→ 0 as k −→∞.
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(c) f(xk)− f(xk+1) ≥M‖∇f(xk)‖2, where

M =



t̃

(
1− t̃L

2

)
for constant stepsize,

1

2L
for exact line search,

αmin

{
s,

2β(1− α)

L

}
for backtracking.

(d) Let f ∗ be the limit of the convergent sequence {f(xk)}k≥0. Then for any n = 0, 1, 2, . . . we
have

min
k=0,1,...,n

‖∇f(xk)‖ ≤

√
f(x0)− f ∗
M(n+ 1)

.

Statement (4) says that the gradient of one of the previous step is small, i.e. the gradient
at the present step might not be small.

Lemma 4.4.3 (Descent Lemma). Let f ∈ C1,1
L (Rn) for some L > 0. Then for any x, y ∈ Rn

we have

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖x− y‖2.

Proof. By the fundamental theorem of calculus,

f(y)− f(x) =

∫ 1

0

〈∇f(x+ t(y − x)), yx〉 dt

= 〈∇f(x), y − x〉+

∫ 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉 dt

Thus

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤
∫ 1

0

|〈∇f(x+ t(y − x))−∇f(x), yx〉| dt

≤
∫ 1

0

‖〈∇f(x+ t(y − x))−∇f(x)‖ · ‖y − x‖ dt

≤
∫ 1

0

tL‖y − x‖2 dt

=
L

2
‖y − x‖2.

�

Lemma 4.4.4 (Sufficient Decrease Lemma). Suppose that f ∈ C1,1
L (Rn). Then for any x ∈ Rn

and t > 0 we have

f(x)− f(x− t∇f(x)) ≥ t

(
1− Lt

2

)
‖∇f(x)‖2.

Proof. This follows directly from the descent lemma:

f(x− t∇f(x)) ≤ f(x)− t‖∇f(x)‖2 +
Lt2

2
‖∇f(x)‖2
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= f(x)− t
(

1− Lt

2

)
‖∇f(x)‖2.

�

Proof of giant theorem. For part (c), the sufficient decrease lemma gives

f(xk)− f(xk+1) ≥ t

(
1− Lt

2

)
‖∇f(xk)‖2

If we choose t̃ ∈
(

0,
2

L

)
, then the difference greater than 0. For the exact line search, we want

to maximise the function t

(
1− Lt

2

)
over the interval

(
0,

2

L

)
. The maximum is attained at

t = 1/L.
For part (a),

f(xk)− f(xk+1) ≥M‖∇f(xk)‖2 ≥ 0

for some constant M > 0, and hence f(xk) > f(xk+1) unless ∇f(xk) = 0.
For part (b), note that since the sequence {f(xk)}k≥0 is nonincreasing and bounded below,

it converges. In particular,

0 ≤ ‖∇f(xk)‖2 ≤
1

M
[f(xk)− f(xk+1)] −→ 0 as k −→∞.

For part (d), summing the inequality

f(xk)− f(xk+1) ≥M‖∇f(xk)‖2

over k = 0, 1, . . . , n, the LHS is a telescopic sum and so

f(x0)− f(xn+1) ≥M
n∑
k=0

‖∇f(xk)‖2

Since f(xn+1) ≥ f ∗, we obtain

f(x0)− f ∗ ≥M
n∑
k=0

‖∇f(xk)‖2 ≥M(n+ 1) min
k=0,1,...,n

‖∇f(xk)‖2.

�



Chapter 5

Newton’s Method
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Chapter 6

Convex Optimisation

CHT: Motivation, Introduction

6.1 Convex Sets

A set C ⊆ Rn is called convex if for any x, y ∈ C and λ ∈ [0, 1], the point λx+(1−λ)y belongs
to C. Equivalently, we say that C is a convex set if the closed line segment [x, y] connecting
any two points x, y ∈ C is in C.

x

y

Figure 6.1: Examples of convex and nonconvex sets. Left: A square is convex. Right: The
sawtooth-shaped set is not convex.

6.1.1 Important examples

The empty set is vacuously convex. The simplest examples of nonempty convex sets are sin-
gletons and the Euclidean space Rn. It is geometrically obvious that hyperplanes, half-spaces,
norm balls and ellipsoids are convex sets, but we include their proofs to illustrate how one can
establish convexity of sets using the definition of a convex set.

Lemma 6.1.1 (Convexity of hyperplanes and half-spaces). Let a ∈ Rn \ {0} and b ∈ R. The
following sets are convex:

(a) the hyperplane H =
{
x ∈ Rn : aTx = b

}
;

(b) the (closed) half-space H− =
{
x ∈ Rn : aTx ≤ b

}
;

27



28 6.1. Convex Sets

(c) the open half-space
{
x ∈ Rn : aTx < b

}
.

Proof. Let x, y ∈ H− and λ ∈ [0, 1]. Then

aT [λx+ (1− λy)] = λaTx+ (1− λ)aTy ≤ λb+ (1− λ)b = b

where we crucially use the fact that λ ∈ [0, 1]. This shows that λx+(1−λy) ∈ H− and so H− is
convex. An identical argument replacing inequality with equality sign shows that hyperplanes
are convex.

�

x0

a

x

aTx = b

(a) Hyperplane in R2

a

x0
aTx ≥ b

aTx ≤ b

(b) Half-space in R2

Figure 6.2: Hyperplane and half-space in R2, with outward normal vector a ∈ R2 and a point x0
in the hyperplane. Observe that a hyperplane defines two halfspaces (Adopted from [BV04]).

Lemma 6.1.2 (Convexity of balls). Let c ∈ Rn and r > 0. For any arbitrary norm ‖·‖ defined
on Rn, the open ball B(c, r) and closed ball B[c, r] are convex.

Proof. We will show the convexity of B[c, r] as the proof of the convexity of B(c, r) is almost
identical. Let x, y ∈ B[c, r] and λ ∈ [0, 1]. It follows from the triangle inequality of ‖ · ‖ that

‖λx+ (1− λ)y − c‖ = ‖λ(x− c) + (1− λ)(y − c)‖
= |λ|‖x− c‖+ |1− λ|‖y − c‖
≤ λr + (1− λ)r = r

where we again crucially use the fact that λ ∈ [0, 1]. This shows that λx + (1 − λy) ∈ B[c, r]
and so B[c, r] is convex.

�

Lemma 6.1.3 (Convexity of ellipsoids). Let Q ∈ Rn×n be positive semidefinite, b ∈ Rn and
c ∈ R. Then the ellipsoid

E =
{
x ∈ Rn : xTQx+ 2bTx+ c ≤ 0

}
is convex.
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Proof. Let x, y ∈ E, λ ∈ [0, 1] and define z = λx+ (1− λ)y. We need to show that

zTQz + 2bT z + c ≤ 0.

Expanding the first term, we obtain

zTQz = [λx+ (1− λ)y]T Q [λx+ (1− λ)y]

= λ2xTQx+ (1− λ)2yTQy + 2λ(1− λ)xTQy. (6.1.1)

Since Q is positive semidefinite, Q1/2 exists and it follows from the Cauchy-Schwarz inequality
that

2xTQy = xTQ1/2Q1/2y = 2
(
Q1/2x

)T (
Q1/2y

) [
Q1/2 is symmetric.

]
≤ 2‖Q1/2x‖2‖Q1/2y‖2

[
Cauchy-Schwarz inequality.

]
= 2
√
xTQx

√
yTQy

≤ xTQx+ yTQy.
[
Young’s inequality for product.

]
Substituting this into (6.1.1), we obtain

zTQz ≤ λ2xTQx+ (1− λ)2yTQy + λ(1− λ)
[
xTQx+ yTQy

]
=
[
λ2 + λ(1− λ)

]
xTQx+

[
(1− λ)2 + λ(1− λ)

]
yTQy

= λxTQx+ (1− λ)yTQy

and hence

zTQz + 2bT z + c ≤ λxTQx+ (1− λ)yTQy + 2bT (λx+ (1− λ)y) + c

= λ
(
xTQx+ 2bTx+ c

)
+ (1− λ)

(
yTQy + 2bTy + c

)
≤ 0,

since x, y ∈ E. This shows that z ∈ E and the desired result follows.
�

6.1.2 Algebraic operations with convex sets

Establishing convexity of sets directly from the definition of a convex set can be tedious and
often requires a cunning observation, as seen in Lemma 6.1.3. We will describe some operations
that preserve convexity of sets, and these operations allow us to prove that a set is convex by
constructing it from simple sets for which convexity is known. Two standard set operations
that yield convex sets are intersection and Cartesian product.

Lemma 6.1.4. Let Ci ⊂ Rki be a convex set for any i = 1, . . . ,m. Then the Cartesian product

C1 × C2 × · · · × Cm =

{
(x1, x2, . . . , xm) ∈

m∏
i=1

Rki : xi ∈ Ci, i = 1, 2, . . . ,m

}

is convex.
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Proof. Suppose x, y ∈ C1 × C2 × · · · × Cm and λ ∈ [0, 1]. Then

λx+ (1− λ)y = λ (x1, x2, . . . , xm) + (1− λ) (y1, y2, . . . , ym)

=
m∑
i=1

(λxi + (1− λ)yi) ei ∈ C1 × C2 × · · · × Cm,

since Ci is convex and xi, yi ∈ Ci for each i = 1, . . . ,m. The desired statement follows.
�

Lemma 6.1.5 (Closed under arbitrary intersections). Let Ci ⊆ Rn be a convex set for any

i ∈ I, where I is an index set (possibly infinite). Then the set C =
⋂
i∈I

Ci is convex.

Proof. Suppose x, y ∈ C and λ ∈ [0, 1]. Then x, y ∈ Ci for any i ∈ I and since Ci is convex, it

follows that λx+ (1− λ)y ∈ Ci for any i ∈ I, i.e. λx+ (1− λ)y ∈
⋂
i∈I

Ci = C.

�

Example 6.1.6. Consider the (convex) polytope P defined by

P = {x ∈ Rn : Ax ≤ b},

where A ∈ Rm×n and b ∈ Rm, i.e. P is the solution set of a finite number of linear inequalities.
Actually, we can write P as an intersection of half-spaces:

P =
m⋂
i=1

{
x ∈ Rn : aTi x ≤ bi

}
,

where aTi is the ith-row of A. Since half-spaces are convex (see Lemma 6.1.1), it follows from
Lemma 6.1.5 that P is also convex.

Example 6.1.7. It was proven in Lemma 6.1.2 that the unit ball B[0, 1] in R2 is convex. We
present an alternate proof of this fact using Lemma 6.1.5. Indeed, the unit ball in R2 can be
represented as the intersection of infinitely many half-spaces:

B[0, 1] =
⋂

θ∈[0,2π]

{
x ∈ R2 :

[
cos θ
sin θ

]T
x ≤ 1

}
.

(cos θ, sin θ)

[
cos θ
sin θ

]T
x = 1

Let us verify this expression for certain special
angles:

θ = 0 =⇒ x1 ≤ 1

θ =
π

4
=⇒ 1√

2
(x1 + x2) ≤ 1

=⇒ x2 ≤
√

2− x1
θ =

π

2
=⇒ x2 ≤ 1

θ = π =⇒ −x1 ≤ 1 =⇒ x1 ≥ −1
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Lemma 6.1.8 (Closed under affine transformations). Let f : Rn −→ Rm be an affine function.

(a) If C ⊆ Rn is a convex set, then the image of C under f ,

f(C) = {f(x) ∈ Rm : x ∈ C} ,

is convex.

(b) If D ⊆ Rm is a convex set, then the inverse image of D under f ,

f−1(D) = {x ∈ Rn : f(x) ∈ D} ,

is convex.

Proof. Since f is an affine function, there exists A ∈ Rm×n and b ∈ Rm such that

f(x) = Ax+ b for all x ∈ Rn.

Let y1, y2 ∈ f(C) ⊆ Rm and λ ∈ [0, 1], then there exists corresponding vectors x1, x2 ∈ C ⊆ Rn

such that f(x1) = y1 and f(x2) = y2. We will show that the point z = λy1 + (1− λ)y2 ∈ f(C).
Indeed,

z = λf(x1) + (1− λ)f(x2)

= λ(Ax1 + b) + (1− λ)(Ax2 + b)

= A [λx1 + (1− λ)x2] + b ∈ f(C),

since C is convex and x1, x2 ∈ C. This proves part (a). On the other hand, let x1, x2 ∈
f−1(D) ⊆ Rn and λ ∈ [0, 1], then there exists corresponding vectors y1, y2 ∈ D ⊆ Rm such that
f(x1) = y1 and f(x2) = y2. We will show that the point z = λx1 + (1 − λ)x2 ∈ f−1(D), or
equivalently, f(z) ∈ D. Indeed,

f(z) = f (λx1 + (1− λ)x2) = A [λx1 + (1− λ)x2] + b

= λ [Ax1 + b] + (1− λ) [Ax2 + b]

= λf(x1) + (1− λ)f(x2)

= λy1 + (1− λ)y2 ∈ D,

since D is convex. This proves part (b).
�

Corollary 6.1.9. The following set operations preserve convexity.

(a) Scaling and translation: If C ⊆ Rn is a convex set, α ∈ R and b ∈ Rn, then the sets αC
and C + b are convex, where

αC = {αx ∈ Rn : x ∈ C} and C + b = {x+ b : x ∈ C}.

(b) Coordinate projection: If C :=
m∏
i=1

Ci ⊆
m∏
i=1

Rki is a convex set, then the projection of C

onto Ci, proji(C), is convex for any i = 1, . . . ,m, where

proji(C) =

{
xi ∈ Ci : x = (x1, . . . , xm) ∈

m∏
i=1

Ci

}
.
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(c) Minkowski sum: If C1, . . . , Ck ⊆ Rn are convex sets and µ1, . . . , µk ∈ R, then the Minkowski
sum µ1C1 + · · ·+ µkCk is convex, where

µ1C1 + · · ·+ µkCk =

{
k∑
i=1

µixi : xi ∈ Ci, i = 1, . . . , k

}
.

Proof. These results are consequences of Lemma 6.1.8 with suitably chosen affine functions.
Part (a) follows by choosing f(x) = αx for scaling and f(x) = x + b for translation. Part (b)
follows by realising the projection of Ci as image of C under the affine function f : C −→ Ci
defined by

f(x) = eTi x, x = (x1, . . . , xm)T ∈
m∏
i=1

Rki .

Part (c) follows by realising the Minkowski sum as the image of the Cartesian product
k∏
i=1

Ck

under the linear function f(x1, . . . , xk) = µ1x1 + · · ·+ µkxk. CHT: Rewrite part (b).

�

6.1.3 Convex hull

Definition 6.1.10. Given x1, . . . , xk ∈ Rn, a convex combination of these vectors is a vector
of the form

λ1x1 + · · ·+ λkλk

where λ = (λ1, . . . , λk) ∈ ∆k.

For instance, points on a line segment are convex combinations of the endpoints. Given

x1, . . . , xk ∈ Rn, the mean
1

k

k∑
i=1

xk is a convex combination of WHAT?

Theorem 6.1.11. Let C ⊂ Rn be a convex set and x1, . . . , xm ∈ C. Then for any λ ∈ ∆m,

the convex combination
m∑
i=1

λixi ∈ C.

Definition 6.1.12. Let S ∈ Rn. The convex hull of S, denoted conv(S) is the set of all
convex combinations of vectors in S. That is,

conv(S) =

{
k∑
i=1

λixi : x1, . . . , xk ∈ S, λ ∈ ∆k, k ∈ N

}
.

Lemma 6.1.13. Let S ⊂ Rn. If S ⊂ T for some convex set T , then conv(S) ⊂ T . This
implies that conv(S) is the smallest convex set containing S.

Proof. Suppose S ⊂ T for a convex set T . Let z ∈ conv(S), then there exists x1, . . . , xk ∈ S ⊂ T
and λ ∈ ∆k such that

z =
k∑
i=1

λixi.

By Theorem 6.10, z ∈ T since T is convex and this shows that conv(S) ⊂ T . �
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Theorem 6.1.14 (Caratheodory Theorem). Let S ⊂ Rn and x ∈ conv(S). Then there exists
x1, . . . , xn+1 ∈ S such that x ∈ conv ({x1, . . . , xn+1})

Proof. Let x ∈ conv(S). There exists x1, . . . , xk ∈ S and λ ∈ ∆k such that

x =
k∑
i=1

λixi.

The question now is how small can we choose k? WLOG, we can take λi > 0 for all i = 1, . . . , k.
If k ≥ n + 2, consider the vectors x2 − x1, . . . , xk − x1 which are more than n vectors in Rn.
They form a linearly dependent set of vectors in Rn and so there exists µ2, . . . , µk such that

k∑
i=2

µi (xi − x1) = 0.

Define µ1 = −
k∑
i=2

µi, then
k∑
i=1

µi = 0 and in particular
k∑
i=1

µixi = 0. We claim that at least

one of the µi is negative. Let α ≥ 0. Then

x =
k∑
i=1

λixi =
k∑
i=1

λi + α
k∑
i=1

µixi =
k∑
i=1

(λi + αµi)xi.

Note that we have
k∑
i=1

λi + αµi = 1 and so the above is a convex combination representation

if and only if
λi + αµi ≥ 0 for all i = 1, . . . , k.

Since λi ≥ 0 for all i, the above inequalities are satisfied if we choose

α = min
i : µi<0

−λi
µi
.

But this implies that λi + αµi = 0 for some i, which means that x is a convex combination of
k − 1 vectors. �

6.1.4 Convex cone

Definition 6.1.15. A set S ⊂ Rn is a cone if for any x ∈ S and λ ≥ 0, we have λx ∈ S.

Lemma 6.1.16. A set S is a convex cone if and only if

(a) x, y ∈ S =⇒ x+ y ∈ S

(b) x ∈ S, λ ≥ 0 =⇒ λx ∈ S

Example 6.1.17. The nonnegative orthant Rn
+ is a convex cone. Let’s verify this using the

lemma above. Let x, y ∈ Rn
+. Clearly x+ y ∈ Rn

+ and λx ∈ S for any λ ≥ 0.

Example 6.1.18. Another example would be the Lorentz cone, given by

Ln =
{

(x, t) ∈ Rn+1 : ‖x‖ ≤ t, x ∈ Rn, t ∈ R
}
.

It can be shown that the Lorentz cone is actually a convex cone.
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6.2 Convex Functions

Definition 6.2.1. A function f : C −→ R defined on a convex set C ⊂ Rn is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ C and λ ∈ [0, 1]

and strictly convex if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) for all x, y ∈ C and λ ∈ (0, 1)

Examples of convex functions include affine functions and norms.

Theorem 6.2.2 (Jensen’s inequality). Suppose f is convex, x1, . . . , xn ∈ C and λ ∈ ∆k. Then

f

(
k∑
i=1

λixi

)
≤

k∑
i=1

λif(xi).

Theorem 6.2.3 (Theorem 7.6). Suppose f ∈ C1(C). Then f is convex if and only if

f(x) +∇f(x)T (x− y) ≤ f(y) for any x, y ∈ C.
Proposition 7.8.

Theorem 6.2.4. Suppose f ∈ C2(C). Then f is convex if and only if ∇2f(x) � 0 for all
x ∈ C.

6.2.1 Operations preserving convexity

lalallalalalaallala

Theorem 6.2.5. Let f1, . . . , fp : C −→ R be p convex functions over a convex set C ⊆ Rn.
Then the maximum function

f(x) = max
i=1,...,p

fi(x)

is convex over C.

Proof. Let x, y ∈ C and λ ∈ [0, 1]. Then

f(λx+ (1− λ)y) ≤ max
i=1,...,p

fi (λx+ (1− λ)y)

≤ max
i=1,...,p

[λfi(x) + (1− λ)fi(y)]

≤ λ max
i=1,...,p

fi(x) + (1− λ) max
i=1,...,p

fi(y)

= λf(x) + (1− λ)f(y).

�

Example 6.2.6. Example 7.27

Theorem 6.2.7 (Theorem 7.2.8). Let f : C × D −→ R be a convex function where C ⊆ Rm

and D ⊆ Rn are convex. Then
g(x) = min

y∈D
f(x, y)

is convex over C.

Example 6.2.8. Let C ⊆ Rn be a convex set. Then

f(x) = d(x,C) = min
y∈C
‖x− y‖

is convex.
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6.2.2 Sublevel sets of convex functions

Definition 6.2.9. Let f : S −→ R be defined on S ⊆ Rn. Then a α-sublevel set of f is

Lev(f, α) = {x ∈ S : f(x) ≤ α} .

Theorem 6.2.10. Let f : C −→ R be a convex function on a convex set C ⊆ Rn. For any
α ∈ R, the α-sublevel set of f is a convex set.

Proof. Let x, y ∈ Lev(f, α) and λ ∈ [0, 1]. Then

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

≤ λα + (1− λ)α = α.

This shows that λx+ (1− λ)y ∈ Lev(f, α). �

Example 6.2.11. This can be used to show that B[0, 1] ⊂ Rn is a convex set. Indeed,

B[0, 1] = Lev(f, 1), where f(x) = ‖x‖.

Example 6.2.12. Consider the following subset of Rn:

D =

{
x ∈ Rn :

(
xTQx+ 1

)2
+ ln

(
n∑
i=1

exi

)
≤ 10

}
,

where Q ∈ Rn×n, Q � 0. The set D is convex since D = Lev(f, 10), where

f(x) =
(
xTQx+ 1

)2
+ ln

(
n∑
i=1

exi

)
.

Sublevel sets do not characterise convex functions, take a function with a cusp for example
(or Heaviside function). Convex implies quasiconvex, not the other way.

Definition 6.2.13. A function f : C −→ R defined on a convex st C ⊆ Rn is quasiconvex if
Lev(f, α) are convex for all α ∈ R.

6.2.3 Maxima of convex functions

Theorem 6.2.14. Let f : C −→ R be a convex function which is not constant over a convex
set C ⊆ Rn. Then f does not attain its maximum at a point in the interior of C. That is, if
f attains its maxima, then it must be at the boundary.

Theorem 6.2.15. Let f : C −→ R be a convex, continuous function over a convex, compact
set C ⊆ Rn. Then there exists at least one maximiser of f over C that is an extreme point of
C.

Proof. Let x∗ be a maximiser of f over C. Krein-Milman asserts that

C = conv(ext(C)),
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i.e. there exists x1, . . . xk ∈ ext(C) and λ ∈ ∆k such that

x∗ =
k∑
i=1

λixi.

By Jensen’s inequality,

f(x∗) ≤
k∑
i=1

λif(xi).

In particular,
k∑
i=1

λi [f(xi)− f(x∗)] ≥ 0.

Since x∗ is a maximiser of f over C, we have that f(xi) ≤ f(x∗) for each i = 1, . . . , k. This
means that f(xi) = f(x∗) for each i = 1, . . . , k since λi ≥ 0 and the LHS of the inequality is a
sum of nonpositive terms. Hence these extreme points are maximisers of f over C. �

Example 6.2.16. Let Q � 0 and consider the optimisation problem

max
x∈Rn,‖x‖∞=1

xTQx.

Since the objective function is convex and the admissible set is compact and convex, it follows
from the theorem that we only have to check extreme points {−1, 1}n

Example 6.2.17. Linear programming: max cT c such that Ax ≤ b. The admissible set is a
polyhedron which is a compact, convex set. So we “only” have to consider the vertices of this
polyhedron to find the maximiser. Unfortunately, the number of vertices of a polyhedron grows
exponentially with the dimension.
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